Published Research

PUBLISHED RESEARCH

To date, there have been 27 papers and 1 GeneReviews chapter published on Okur-Chung Neurodevelopmental Syndrome. Below are links to the papers and the reference resource.

Okur-Chung Neurodevelopmental Syndrome


Dr. Okur wrote a chapter in GeneReviews about OCNDS.


GeneReviews is regarded as a reference resource among geneticists in terms of learning about the scope of a given condition, molecular genetic causes, and surveillance and management guidelines. Dr. Okur encourages you to share this chapter with your clinicians for follow-up directions. He said, "It may not reflect every problem that families encounter, partly because the chapter is limited to published data, but regular updates will be done every 2-3 years and should there be a significant discovery. We are so grateful to every family in the Okur-Chung Neurodevelopmental Syndrome community for teaching us daily about this syndrome, which enabled us to share this knowledge with the broader community.”

Abstract

Clinical characteristics.

Individuals with Okur-Chung neurodevelopmental syndrome (OCNDS) frequently have nonspecific clinical features, delayed language development, motor delay, intellectual disability (typically in the mild-to-moderate range), generalized hypotonia starting in infancy, difficulty feeding, and nonspecific dysmorphic facial features. Developmental delay affects all areas of development, but language is more impaired than gross motor skills in most individuals. Intellectual disability has been reported in about three quarters of individuals. Less common findings may include kyphoscoliosis, postnatal short stature, disrupted circadian rhythm leading to sleep disturbance, seizures, and poor coordination.

Diagnosis/testing.

The diagnosis of OCNDS is established in a proband with suggestive findings and a heterozygous pathogenic variant in CSNK2A1 identified by molecular genetic testing.

Management.

Treatment of manifestations: Feeding therapy and consideration of gastrostomy tube placement in those with persistent feeding issues; consideration of growth hormone therapy (as directed by an endocrinologist) in those with short stature and evidence of partial growth hormone deficiency; standard treatment of epilepsy (as directed by a neurologist) with anti-seizure medication; consideration of intravenous immune globulin treatment (as directed by an immunologist) for demonstrated hypogammaglobulinemia; physical therapy / occupational therapy / rehabilitation medicine for those with hypotonia and/or motor coordination issues; standard supportive developmental therapies; standard treatment of scoliosis, constipation, congenital heart defects, renal anomalies / pelviectasis, and sleep disorders.

Surveillance: At each visit: measure growth parameters, growth velocity, and nutritional status; monitor for signs of ongoing feeding issues / safety of oral intake and constipation; assess new neurologic manifestations (seizures, changes in tone, movement disorders, poor coordination); monitor developmental progress, behavior, and educational needs; monitor for evidence of frequent or unusual infections and for signs and symptoms of sleep disturbance. Every one to three years: ophthalmology evaluation.

Genetic counseling.

OCNDS disorder is expressed in an autosomal dominant manner and typically caused by a de novo CSNK2A1 pathogenic variant. Therefore, the risk to other family members is presumed to be low. Rarely, individuals diagnosed with OCNDS have the disorder as the result of a CSNK2A1 pathogenic variant inherited from an affected parent or an unaffected parent with low-level mosaicism in the blood. Once a CSNK2A1 pathogenic variant has been identified in an affected family member, prenatal testing and preimplantation genetic testing are possible.

Abstract

Okur-Chung neurodevelopmental syndrome (OCNDS) (OMIM# 617062) is an autosomal dominant disorder caused by heterozygous mutations in the CSNK2A1 gene localized on chromosome 20p13.1. The diagnosis of OCNDS is based on suggestive clinical findings and the presence of a heterozygous pathogenic variant in the CSNK2A1 gene. Developmental delays, mild-to-moderate intellectual disabilities, hypotonia, difficulty feeding, distinctive facial features, and delayed speech are the common features associated with OCNDS. Several nonspecific clinical features have also been reported in some individuals, including behavioral problems, disrupted sleep patterns, abnormal head size, seizures, and short stature. Previously reported subjects with OCNDS were diagnosed as simplex cases caused by de novo heterozygous pathogenic variants in CSNK2A1 with unaffected parents.

Abstract

CK2 is a constitutively active Ser/Thr protein kinase, which phosphorylates hundreds of substrates, controls several signaling pathways, and is implicated in a plethora of human diseases. Its best documented role is in cancer, where it regulates practically all malignant hallmarks. Other well-known functions of CK2 are in human infections; in particular, several viruses exploit host cell CK2 for their life cycle. Very recently, also SARS-CoV-2, the virus responsible for the COVID-19 pandemic, has been found to enhance CK2 activity and to induce the phosphorylation of several CK2 substrates (either viral and host proteins). CK2 is also considered an emerging target for neurological diseases, inflammation and autoimmune disorders, diverse ophthalmic pathologies, diabetes, and obesity. In addition, CK2 activity has been associated with cardiovascular diseases, as cardiac ischemia–reperfusion injury, atherosclerosis, and cardiac hypertrophy. The hypothesis of considering CK2 inhibition for cystic fibrosis therapies has been also entertained for many years. Moreover, psychiatric disorders and syndromes due to CK2 mutations have been recently identified. On these bases, CK2 is emerging as an increasingly attractive target in various fields of human medicine, with the advantage that several very specific and effective inhibitors are already available. Here, we review the literature on CK2 implication in different human pathologies and evaluate its potential as a pharmacological target in the light of the most recent findings.

Abstract

Okur-Chung Neurodevelopmental Syndrome (OCNDS) is caused by heterozygous mutations to the CSNK2A1 gene, which encodes the alpha subunit of casein kinase II (CK2). The most frequently occurring mutation is lysine 198 to arginine (K198R). To investigate the impact of this mutation, we first generated a high-resolution phosphorylation motif of CK2WT, including the first characterization of specificity for tyrosine phosphorylation activity. A second high resolution motif representing CK2K198R substrate specificity was also generated. Here we report for the first time the impact of the OCNDS associated CK2K198R mutation. Contrary to prior speculation, the mutation does not result in a loss of function, but rather shifts the substrate specificity of the kinase. Broadly speaking the mutation leads to 1) a decreased preference for acidic residues in the +1 position, 2) a decreased preference for threonine phosphorylation, 3) an increased preference for tyrosine phosphorylation, and 4) an alteration of the tyrosine phosphorylation specificity motif. To further investigate the result of this mutation we have developed a probability-based scoring method, allowing us to predict shifts in phosphorylation in the K198R mutant relative to the wild type kinase. As an initial step we have applied the methodology to the set of axonally localized ion channels in an effort to uncover potential alterations of the phosphoproteome associated with the OCNDS disease condition.

Abstract

De novo germline variants of the casein kinase 2x subunit (CK2x) gene (CSNK2A1) have been reported in individuals with the congenital neuropsychiatric disorder Okur-Chung neurodevelopmental syndrome (OCNS). Here, we report on two unrelated children with OCNS and review the literature to explore the genotype-phenotype relationship in OCNS. Both children showed facial dysmorphism, growth retardation, and neuropsychiatric disorders. Using whole-exome sequencing, we identified two novel de novo CSNK2A1 variants: c.479A>G p.(HI60R) and c.238C>T p.(R80C). A search of the literature identified 12 studies that provided information on 35 CSNK2A1 variants in various protein-coding regions of CK2x. By quantitatively analyzing data related to these CSNK2A1 variants and their corresponding phenotypes, we showed for the first time that mutations in protein-coding CK2x regions appear to influence the phenotypic spectrum of OCNS. Mutations altering the ATP/GTP-binding loop were more likely to cause the widest range of phenotypes. Therefore, any assessment of clinical spectra for this disorder should be extremely thorough. This study not only expands the mutational spectrum of OCNS, but also provides a comprehensive overview to improve our understanding of the genotype-phenotype relationship in OCSN.

Abstract

The Okur-Chung neurodevelopmental syndrome, or OCNDS, is a newly discovered rare neurodevelopmental disorder. It is characterized by developmental delay, intellectual disability, behavioral problems (hyperactivity, repetitive movements and social interaction deficits), hypotonia, epilepsy and language/verbalization deficits. OCNDS is linked to de novo mutations in CSNK2A1, that lead to missense or deletion/truncating variants in the encoded protein, the protein kinase CK2α. Eighteen different missense CK2α mutations have been identified to date; however, no biochemical or cell biological studies have yet been performed to clarify the functional impact of such mutations. Here, we show that 15 different missense CK2α mutations lead to varying degrees of loss of kinase activity as recombinant purified proteins and when mutants are ectopically expressed in mammalian cells. We further detect changes in the phosphoproteome of three patient-derived fibroblast lines and show that the subcellular localization of CK2α is altered for some of the OCNDS-linked variants and in patient-derived fibroblasts. Our data argue that reduced kinase activity and abnormal localization of CK2α may underlie the OCNDS phenotype.

Abstract

Cilia biogenesis is a complex, multistep process involving the coordination of multiple cellular trafficking pathways. Despite the importance of ciliogenesis in mediating the cellular response to cues from the microenvironment, we have only a limited understanding of the regulation of cilium assembly. We previously identified Tau tubulin kinase 2 (TTBK2) as a key regulator of ciliogenesis. Here, using CRISPR kinome and biotin identification screening, we identify the CK2 catalytic subunit CSNK2A1 as an important modulator of TTBK2 function in cilia trafficking. Superresolution microscopy reveals that CSNK2A1 is a centrosomal protein concentrated at the mother centriole and associated with the distal appendages. Csnk2a1 mutant cilia are longer than those of control cells, showing instability at the tip associated with ciliary actin cytoskeleton changes. These cilia also abnormally accumulate key cilia assembly and SHH-related proteins. De novo mutations of Csnk2a1 were recently linked to the human genetic disorder Okur-Chung neurodevelopmental syndrome (OCNDS). Consistent with the role of CSNK2A1 in cilium stability, we find that expression of OCNDS-associated Csnk2a1 variants in wild-type cells causes ciliary structural defects. Our findings provide insights into mechanisms involved in ciliary length regulation, trafficking, and stability that in turn shed light on the significance of cilia instability in human disease.

Abstract

Casein kinase 2 (CK2) is a serine threonine kinase ubiquitously expressed in eukaryotic cells and involved in various cellular processes. In recent studies, de novo variants in CSNK2A1 and CSNK2B, which encode the subunits of CK2, have been identified in individuals with intellectual disability syndrome. In this study, we describe four patients with neurodevelopmental disorders possessing de novo variants in CSNK2A1 or CSNK2B. Using whole-exome sequencing, we detected two de novo variants in CSNK2A1 in two unrelated Japanese patients, a novel variant c.571C>T, p.(Arg191*) and a recurrent variant c.593A>G, p.(Lys198Arg), and two novel de novo variants in CSNK2B in Japanese and Malaysian patients, c.494A>G, p.(His165Arg) and c.533_534insGT, p.(Pro179Tyrfs*49), respectively. All four patients showed mild to profound intellectual disabilities, developmental delays, and various types of seizures. This and previous studies have found a total of 20 CSNK2A1 variants in 28 individuals with syndromic intellectual disability. The hotspot variant c.593A>G, p.(Lys198Arg) was found in eight of 28 patients. Meanwhile, only five CSNK2B variants were identified in five individuals with neurodevelopmental disorders. We reviewed the previous literature to verify the phenotypic spectrum of CSNK2A1- and CSNK2B-related syndromes.

Abstract

Neurodevelopmental disorders (NDDs) refer to a group of often severe pediatric conditions associated with impaired cognitive, sensory, and/or motor functions stemming from atypical development of the central nervous system. Although the recent development of genetic diagnostic tools, such as exome sequencing, has highlighted the prevalence of genetic anomalies in NDDs, the broad and variable and, at times, evolving clinical manifestations can render their prompt diagnosis difficult. Recently, de novo mutations in the CSNK2A1 gene, encoding for the alpha subunit of the casein kinase 2, have been found to cause a novel NDD with multisystemic involvement, termed Okur-Chung disease (MIM 617062). Clinical features include intellectual disability, microcephaly, hypotonia, and ataxia, with high inter-subject variability [1–3]. Here we report, to our knowledge for the first time, a pediatric patient carrier of a “de novo” mutation in the CSNK2A1 gene initially presenting with isolated retinal dystrophy.

Abstract

We describe an 8-year-old Japanese boy with a de novo recurrent missense mutation in CSNK2A1, c.593A>G, that is causative of Okur–Chung neurodevelopmental syndrome. He exhibited distinctive facial features, severe growth retardation with relative macrocephaly, and friendly, hyperactive behavior. His dysmorphic features might suggest a congenital histone modification defect syndrome, such as Kleefstra, Coffin–Siris, or Rubinstein–Taybi syndromes, which are indicative of functional interactions between the casein kinase II, alpha 1 gene and histone modification factors.

Abstract

Whole exome sequencing (WES) can be used to efficiently identify de novo genetic variants associated with genetically heterogeneous conditions including intellectual disabilities. We have performed WES for 4102 (1847 female; 2255 male) intellectual disability/developmental delay cases and we report five patients with a neurodevelopmental disorder associated with developmental delay, intellectual disability, behavioral problems, hypotonia, speech problems, microcephaly, pachygyria and dysmorphic features in whom we have identified de novo missense and canonical splice site mutations in CSNK2A1, the gene encoding CK2α, the catalytic subunit of protein kinase CK2, a ubiquitous serine/threonine kinase composed of two regulatory (β) and two catalytic (α and/or α') subunits. Somatic mutations in CSNK2A1 have been implicated in various cancers; however, this is the first study to describe a human condition associated with germline mutations in any of the CK2 subunits.

Abstract

Okur-Chung syndrome is a neurodevelopmental condition attributed to germline CSNK2A1 pathogenic missense variants. We present 8 unreported subjects with the above syndrome, who have recognizable dysmorphism, varying degrees of developmental delay and multisystem involvement. Together with 6 previously reported cases, we present a case series of 7 female and 7 male subjects, highlighting the recognizable facial features of the syndrome (microcephaly, hypertelorism, epicanthic fold, ptosis, arched eyebrows, low set ears, ear fold abnormality, broad nasal bridge and round face) as well as frequently occurring clinical features including neurodevelopmental delay (93%), gastrointestinal (57%), musculoskeletal (57%) and immunological (43%) abnormalities. The variants reported in this study are evolutionary conserved and absent in the normal population. We observed that the CSNK2A1 gene is relatively intolerant to missense genetic changes, and most variants are within the protein kinase domain. All except 1 variant reported in this cohort are spatially located on the binding pocket of the holoenzyme. We further provide key recommendations on the management of Okur-Chung syndrome. To conclude, this is the second case series on Okur-Chung syndrome, and an in-depth review of the phenotypic features and genomic findings of the condition with suggestions on clinical management.

Abstract

Variants in the Protein Kinase CK2 alpha subunit, encoding the CSNK2A1 gene, have previously been reported in children with an intellectual disability and dysmorphic facial features syndrome: now termed the Okur-Chung neurodevelopmental syndrome. More recently, through trio-based exome sequencing undertaken by the Deciphering Developmental Disorders Study (DDD study), a further 11 children with de novo CSNK2A1 variants have been identified. We have undertaken detailed phenotyping of these patients. Consistent with previously reported patients, patients in this series had apparent intellectual disability, swallowing difficulties, and hypotonia. While there are some shared facial characteristics, the gestalt is neither consistent nor readily recognized. Congenital heart abnormalities were identified in nearly 30% of the patients, representing a newly recognized CSNK2A1 clinical association. Based upon the clinical findings from this study and the previously reported patients, we suggest an initial approach to the management of patients with this recently described intellectual disability syndrome.

Abstract

Background

Okur-Chung neurodevelopmental syndrome (OCNDS) and tricho-rhino-phalangeal syndrome type I (TRPSI) are rare Mendelian diseases. OCNDS is caused by CSNK2A1 gene variants and TRPSI is caused by the TRPS1gene. However, to have two Mendelian diseases in one patient is even rarer.


Case presentation

A 6-year-10-month-old boy characterized by special facial features, short stature and mental retardation was referred to our pediatric endocrinology department. Whole-exome sequencing (WES) was done to detect the molecular basis of his disease. This patient was confirmed to carry two variants in the CSNK2A1 gene and one in the TRPS1 gene. The variant in the CSNK2A1 gene was vertically transmitted from his father, and the variant in TRPS1 gene from his mother. These two variants are classified as pathogenic and the causes of the presentation in this child. This patient’s father and mother have subsequently been diagnosed as having OCNDS and TRPSI respectively.


Conclusion

This is the first reported case of a dual molecular diagnosis of tricho-rhino-phalangeal syndrome type I and Okur-Chung neurodevelopmental syndrome in the same patient. This patient is the first published example of vertical transmission of this recurrent CSN2A1 variant from parent to child. A novel variant in the TRPS1 gene that is pathogenic was also identified. In conclusion, identification of the variants in this patient expands the phenotypes and molecular basis of dual Mendelian diseases.

Abstract

Okur-Chung neurodevelopmental syndrome (OCNS, MIM#617062) is a rare autosomal dominant syndrome related to CSNK2A1 mutations. It is characterized by intellectual disability, hypotonia, feeding and speech difficulties, dysmorphic features, and multisystem involvement. To date, less than 30 patients with OCNS have been described in detail in the literature, primarily in Asian populations. Here, we report a 5-year-old Spanish female with OCNS arising from a novel CSNK2A1 mutation c.149A>G, p.Tyr50Cys. Although her clinical features were compatible with OCNS syndrome, magnetic resonance imaging unexpectedly showed a duplication of the pituitary gland, a clinical finding not previously related to any known genetic condition. Other novel signs were an absence of the olfactory bulbs and multiple duplications of cervical vertebrae. We suggest that the midline abnormalities may be a significant part of this condition and lead to diagnostic suspicion. However, further descriptions are needed.

Abstract

Objective: To summarize the clinical features and gene variation characteristics of a child with Okur-Chung syndrome caused by CSNK2A1 gene variation. Methods: The medical records of one patient who was diagnosed with Okur-Chung syndrome in Department of Pediatrics, Xiangya Hospital of Central South University in July 2018 were analyzed. Using "CSNK2A1" gene as the keyword, relevant information about CSNK2A1 gene was searched at CNKI, Wangfang Data, OMIM, PubMed, ClinVar, Decipher (until August 2018). The characteristics of CSNK2A1 gene variation and the clinical phenotype of children with Okur-Chung syndrome were summarized. Results: The boy, 1 year and 8 months old, was sent to hospital at the age of 1 year and 6 months because of delayed growth for more than 1 year. He was susceptible to cough while eating or drinking. He was also suffering from constipation and poor sleep. Physical examination showed that his body weight was 10.2 kg, microcephalus, broad nasal bridge, micrognathia and hypotonia were observed. Whole exome-sequencing test identified a de novo heterozygous variation c.524A>G (p.D175G) in CSNK2A1 gene. This was the first case report of CSNK2A1 gene variation in the mainland of China. So far, a total of 52 cases were reported worldwide (52 single nucleotide variants), including 35 cases in 7 articles, 9 cases in Decipher database and 14 cases in ClinVar database, 6 of which were also reported in PubMed. In previously reported 52 cases, there were 48 missense variants, whereas, splice and frameshift variations were found in 3 cases and 1 case, respectively. Among the variation sites, p.K198R was the most common sites (12 cases), followed by p.R47 (6 cases), p.R80H (4 cases) and p.S51 (4 cases). Among these 52 cases, only 27 cases have been elaborately described in other studies, so the clinical characteristics were summarized in 28 cases eventually (including 27 cases in the articles and this patient), 27 of whom presented severe intellectual disability or global development delay, 1 case with mild language development delay, and 19 had hypotonia; 8 had autism spectrum disorders, 5 had attention deficit hyperactivity disorder, and 9 had sleep problems. 20 had dysmorphic facial features, 10 of them had microcephalus. 16 had failure to thrive or short stature, 12 had gastrointestinal or oromotor problem, 5 had immunological problem, and 4 had skin abnormalities. Conclusions: The main clinical feature of patients with CSNK2A1 gene variations is intellectual disability with multiple systems involved, such as microcephalus, abnormal facial shape and hypotonia. The variation of CSNK2A1 gene is the cause of Okur-Chung syndrome. Missense variation is the main cause, and P. K198R is the hotspot variation.

Abstract

The genomes of individuals with severe, undiagnosed developmental disorders are enriched in damaging de novo mutations (DNMs) in developmentally important genes. Here we have sequenced the exomes of 4,293 families containing individuals with developmental disorders, and meta-analysed these data with data from another 3,287 individuals with similar disorders. We show that the most important factors influencing the diagnostic yield of DNMs are the sex of the affected individual, the relatedness of their parents, whether close relatives are affected and the parental ages. We identified 94 genes enriched in damaging DNMs, including 14 that previously lacked compelling evidence of involvement in developmental disorders. We have also characterized the phenotypic diversity among these disorders. We estimate that 42% of our cohort carry pathogenic DNMs in coding sequences; approximately half of these DNMs disrupt gene function and the remainder result in altered protein function. We estimate that developmental disorders caused by DNMs have an average prevalence of 1 in 213 to 1 in 448 births, depending on parental age. Given current global demographics, this equates to almost 400,000 children born per year.

Abstract

In recent years, variants in the catalytic and regulatory subunits of the kinase CK2 have been found to underlie two different, yet symptomatically overlapping neurodevelopmental disorders, termed Okur-Chung neurodevelopmental syndrome (OCNDS) and Poirier-Bienvenu neurodevelopmental syndrome (POBINDS). Both conditions are predominantly caused by de novo missense or nonsense mono-allelic variants. They are characterized by a generalized developmental delay, intellectual disability, behavioral problems (hyperactivity, repetitive movements and social interaction deficits), hypotonia, motricity and verbalization deficits. One of the main features of POBINDS is epilepsies, which are present with much lower prevalence in patients with OCNDS. While a role for CK2 in brain functioning and development is well acknowledged, these findings for the first time clearly link CK2 to defined brain disorders. Our review will bring together patient data for both syndromes, aiming to link symptoms with genotypes, and to rationalize the symptoms through known cellular functions of CK2 that have been identified in preclinical and biochemical contexts. We will also compare the symptomatology and elaborate the specificities that distinguish the two syndromes.

Abstract

Introduction: Autosomal dominant pathogenic variations in the CSNK2A1 gene cause Okur-Chung neurodevelopmental syndrome (OCNDS).


Methods: The proband and her parents were examined thoroughly and observed for any issues related to OCNDS. Furthermore, peripheral blood samples were collected from each subject for further investigations. Whole-exome sequencing identified a pathogenic variant in CSNK2A1 (NM_001895: c.62G>A, p.R21Q; rs1402734448).


Results: The proband has global developmental delay, speech disorders, epilepsy, and behavioral issues. Despite the previously reported cases, she manifested both atonic and myoclonic seizures simultaneously. Lastly, we provide a review of the reported cases with OCNDS.


Discussion: p.R21Q causes OCNDS. Further studies are highly recommended concerning this mutation to validate the results of this study and expand the knowledge regarding CSNK2A1 and the phenotypic spectrum of OCNDS.

Abstract

Okur-Chung Neurodevelopmental Syndrome (OCNDS) and Poirier-Bienvenu Neurodevelopmental Syndrome (POBINDS) were recently identified as rare neurodevelopmental disorders. OCNDS and POBINDS are associated with heterozygous mutations in the CSNK2A1 and CSNK2B genes which encode CK2α, a serine/threonine protein kinase, and CK2β, a regulatory protein, respectively, which together can form a tetrameric enzyme called protein kinase CK2. A challenge in OCNDS and POBINDS is to understand the genetic basis of these diseases and the effect of the various CK2⍺ and CK2β mutations. In this study we have collected all variants available to date in CSNK2A1 and CSNK2B, and identified hotspots. We have investigated CK2⍺ and CK2β missense mutations through prediction programs which consider the evolutionary conservation, functionality and structure or these two proteins, compared these results with published experimental data on CK2α and CK2β mutants, and suggested prediction programs that could help predict changes in functionality of CK2α mutants. We also investigated the potential effect of CK2α and CK2β mutations on the 3D structure of the proteins and in their binding to each other. These results indicate that there are functional and structural consequences of mutation of CK2α and CK2β, and provide a rationale for further study of OCNDS and POBINDS-associated mutations. These data contribute to understanding the genetic and functional basis of these diseases, which is needed to identify their underlying mechanisms.

Abstract

Specific de novo mutations in the CSNK2A1 gene, which encodes CK2α, the catalytic subunit of protein kinase CK2, are considered as causative for the Okur-Chung neurodevelopmental syndrome (OCNDS). OCNDS is a rare congenital disease with a high phenotypic diversity ranging from neurodevelopmental disabilities to multi-systemic problems and characteristic facial features. A frequent OCNDS mutation is the exchange of Lys198 to Arg at the center of CK2α's P+1 loop, a key element of substrate recognition. According to preliminary data recently made available, this mutation causes a significant shift of the substrate specificity of the enzyme. We expressed the CK2αLys198Arg recombinantly and characterized it biophysically and structurally. Using isothermal titration calorimetry (ITC), fluorescence quenching and differential scanning fluorimetry (Thermofluor), we found that the mutation does not affect the interaction with CK2β, the non-catalytic CK2 subunit, and that the thermal stability of the protein is even slightly increased. However, a CK2αLys198Arg crystal structure and its comparison with wild-type structures revealed a significant shift of the anion binding site harboured by the P+1 loop. This observation supports the notion that the Lys198Arg mutation causes an alteration of substrate specificity which we underpinned here with enzymological data.

Abstract

Okur-Chung neurodevelopmental syndrome is a rare autosomal dominant disorder caused by pathogenic variants in CSNK2A1, which encodes the alpha 1 catalytic subunit of -casein kinase II. This syndrome is characterized by intellectual disability, developmental delay, and multisystemic -abnormalities including those of the brain, extremities, and skin as well as cardiovascular, gastrointestinal, and immune systems. In this study, we describe a 5-year-old boy with a de novo novel nonsense variant in CSNK2A1, NM_001895.3:c.319C>T (p.Arg107*). He showed bilateral persistent hyperplastic primary vitreous with microphthalmia, lens dysplasia, and coloboma. Ocular manifestations are very rare in this syndrome, and this study expands the spectrum of the clinical presentations of this syndrome.

Abstract

In this report, we expand the genotypic spectrum of OCNDS by reporting two novel CSNK2A1 variants, identified in two children by whole exome sequencing (WES). Both patients have African ancestors. They present with distinct, non-overlapping, subtle phenotypes, emphasizing the wide clinical variability associated with this condition. We also report a case of OCNDS caused by a de novo CSNK2A1 frameshift variant with no associated learning difficulties.

No abstract available. Contact research@csnk2a1foundation.org for more information.

Abstract

Objective: To analyze pathogenic variant of CSNK2A1 gene in a boy with Okur-Chung neurodevelopmental syndrome (OCNS).


Methods: The 8-year-old boy presented with growth retardation, intellectual disability and spells of breath holding. With genomic DNA extracted from peripheral blood samples of the patient and his parents, whole exome sequencing was carried out. Putative pathogenic variants were verified with Sanger sequencing. The nature and impact of detected variants were predicted through bioinformatic analysis.


Results: A novel de novo missense variant c.149A>G (p.Tyr50Cys) of the CSNK2A1 gene was identified, which was unreported previously. The variant was predicted to be pathogenic by PolyPhen-2, Mutation Taster and SIFT software. Based on a HomoloGene system, 50 loci within the CK2alpha protein are highly conserved. The change of amino acid (Cys) at position 50 has destroyed the ATP binding loop domain, causing serious damage to its function. As predicted by a Swiss PDB viewer, the variant can significantly alter the spatial structure of CK2alpha, resulting in loss of protein function.


Conclusion: The patient's condition may be attributed to the novel de novo missense variant c.149A>G (p.Tyr50Cys) of the CSNK2A1 gene.


Contact research@csnk2a1foundation.org for more information.

Abstract

Background: Children with neurodevelopmental disorders (NDDs) often have poor oral health and dental abnormalities. An increasing number of genes have been associated with neurodevelopmental conditions affecting the oral cavity, but the specific dental features associated with many genes remain unknown.


Aim: To report the types and frequencies of dental manifestations in children with neurodevelopmental conditions of known genetic cause.


Design: A 30-question survey assesing ectodermal and dental features was administered through Simons Searchlight, with which formed a recontactable cohort of individuals with genetic NDDs often associated with autism spectrum disorder (ASD).


Results: Data were collected from a largely paediatric population with 620 affected individuals across 39 genetic conditions and 145 unaffected siblings without NDDs for comparison. Drooling, difficulty accessing dental care, late primary teeth eruption, abnormal primary and permanent teeth formation, misshapen nails, and hair loss were more frequent in individuals with NDDs. Additionally, we evidenced an association between three new pathogenic gene variant/oral manifestation pairs: CSNK2A1/unusual primary teeth, DYRK1A/late primary teeth eruption, and PPP2R5D/sialorrhea.


Conclusion: Our results demonstrate that genetic NDDs caused by mutations in CSNK2A1, DYRK1A, and PP2R5D are associated with unique dental manifestations, and knowledge of these features can be helpful to personalize dental care.

Abstract


Background: Okur-Chung neurodevelopmental syndrome (OCNDS) is a rare autosomal dominant disorder caused by pathogenic variants in CSNK2A1. It is characterized by intellectual disability, developmental delay, and multisystemic abnormalities.


Methods: We performed the whole-exome sequencing for a patient in a Chinese family. The co-segregation study using the Sanger sequencing method was performed among family members. Reverse transcription and quantitative real-time polymerase chain reaction were carried out using total RNA from blood samples of the proband and wild-type control subjects. A review of patients with OCNDS harboring CSNK2A1 pathogenic variants was conducted through a comprehensive search of the PubMed database.


Results: We identified a novel CSNK2A1 frameshift variant p.Tyr323Leufs*16 in a Chinese family. The proband, a 31-year-old female, presented with abnormal eating habits, recurrent seizures, language impairment, and intellectual disability. Her mother exhibited postnatal hernias, splenomegaly, and a predisposition to infections, but showed no significant developmental impairments or intellectual disability. Genetic studies revealed the presence of this variant in CSNK2A1 in both the proband and her mother. Transcription analysis revealed this variant may lead to nonsense-mediated mRNA decay, suggesting haploinsufficiency as a potential disease mechanism. We reviewed 47 previously reported OCNDS cases and discovered that individuals carrying CSNK2A1 null variants may exhibit a diminished frequency of symptoms linked to language deficits, dysmorphic facial features, or intellectual disability, consequently presenting an overall milder phenotype when compared to those with missense variants.


Conclusion: We report a novel frameshift variant, p.Tyr323Leufs*16, in an OCNDS family with a generally mild phenotype. This study may broaden the spectrum of clinical presentations associated with OCNDS and contribute novel insights into the genotype–phenotype correlation of this condition.

FAQS RESOURCES REGISTER DONATE
Newborn Genetic Screenings
By Penelope Gatlin 05 Oct, 2023
By Penelope Gatlin October 2023 When our son was born in 2012, he was hypotonic, severely jaundiced, had feeding difficulties and features such as epicanthic folds and small low set ears. We were told immediately that doctors had suspicions of a genetic syndrome. At that time, genetic testing was limited and once abnormal karyotype, Trisomy 21, and Fragile X were ruled out, we left the hospital with an 8 day old and no diagnosis. While no testing was available at that time to identify the ultra-rare syndrome my child had, because it wouldn’t even be identified until 4 years later, I can only imagine the difference it would have made to our journey to have such an answer sooner. Instead, we were unprepared and actually unaware that just because a diagnosis hadn’t been made then that it didn’t mean there wasn’t in fact a rare disease present. Instead, we dealt with issues as they came and worried and wondered what would be next. From feeding issues and reflux and constipation, to low muscle tone and delayed walking, to speech delay, social and emotional delays, toileting delays, diagnoses of developmental delay, anxiety, situational mutism, sensory processing disorder, and autism, until finally genetic testing that revealed the diagnosis that we’d waited 7 years to find out. While receiving a diagnosis can seem scary, not having an answer but knowing there must be one is even more so. In 2019, the day I clicked onto the portal to see the test results, the largest word on the page was POSITIVE. My heart stopped for a second. For the first time, I read the words “Okur-Chung Neurodevelopmental Disorder.” A roller coaster of emotions ensued, including sadness that we hadn’t known this from birth because it would have made us as parents more prepared, and given us more understanding about what might arise next. Relief that we had an answer, grateful that this syndrome had been identified and that he was among one of the first hundred diagnosed with it in the world, and glad we had the privilege to have access to the testing. Excitement that we can participate in future research. Fright that there’s so much we don’t know about OCNDS, and happiness that there is something that we do. A feeling that we are no longer shooting in the dark and have a small but supportive community to rely on and learn from. I am hopeful that one day, all newborns with features like my child will be tested at birth, so parents can have access to the answers, support, and interventions and therapies that can best help their child as soon as possible.
Autism Diagnosis
By Terri Jordan 23 Aug, 2023
For 16 years, my child displayed numerous symptoms that left us searching for answers, but a genetic diagnosis remained elusive. I considered having my child evaluated for autism to shed light on their situation. However, when I reached out to teachers, doctors, and therapists, I received frustrating responses: “Your child is too friendly to be autistic.” This statement made me doubt the possibility of autism because my child was sociable. “Your child can transition from one activity to another – they are not autistic.” Hearing this, I questioned whether my child’s ability to shift activities invalidated the need for an autism evaluation. “Your child can look me in the eye and answer questions – they are not autistic.” Observations like this made me second-guess the idea of autism, even though my child faced various challenges. “Getting a diagnosis that does not apply to your child would be a big waste of money.” Despite my persistent concerns, this cautionary advice about the evaluation costs left me hesitant. We finally pursued an evaluation when my son turned 20, and it confirmed that he is indeed on the autism spectrum (severe side). Looking back, I regret not taking this step sooner. I should have pursued the autism diagnosis before we received the genetic diagnosis. There are several benefits we could have gained as a family if we had pursued an early diagnosis: “Early Support Is Crucial:” I now realize that early intervention could profoundly impact my child’s development. We could have accessed the right services and therapies much earlier with a diagnosis. “Understanding My Child Better:” I struggled to comprehend my child’s behaviors and communication difficulties. An earlier diagnosis could have provided insights into their unique needs and thought processes. The education could also help me explain how to react to my child’s behavior to family members. “Tailored Guidance and Resources:” A diagnosis could have opened doors to specialized resources and guidance, enabling me to provide the best possible support for my child. “Connecting with Others:” Being part of the autism community might have connected us with other parents who understand our experiences. Sharing and learning from each other could have been invaluable. “Planning for the Future:” Knowing more about my child’s strengths and challenges could have helped me better plan their future, including education, career, and overall well-being. Depending on your location, many states offer funding and support if your child has an autism diagnosis. I wish I listened to my voice instead of being swayed by experts who didn’t fully understand my child’s situation. Ultimately, I know this decision is significant, requiring careful consideration by parents. Looking back, I wish I had trusted my instincts and sought an evaluation sooner to improve my child’s life.
Share by: